

UP Studio 3

用户手册 V 1.1

Tierti/11e

目录

1. UP STUDIO 3	3
1.1 软件介绍	3
1.2 软件功能	4
1.3 软件特色	4
<u>2. 三维模型切片软件功能说明</u>	5
21 丁程文件栏	
2.2 快捷菜单栏	9
2.3 软件丁具栏	
2.3.1 载入与分层模型工具	
2.3.2 模型编辑工具	
2.3.3 查看模式工具	14
2.3.4 模型修复、合并与支撑编辑工具	16
2.3.5 支撑编辑	17
2.3.6 模型编辑重置工具	20
2.4 工艺参数设置	21
2.4.1 界面介绍	21
2.4.2 实体模型分层区域说明	24
2.4.3 打印工艺参数分类说明	25
2.4.4 分层	26
2.4.5 路径	30
2.4.6 特殊	33
2.4.7 打印	34
2.4.8 打印机	36
2.4.9 喷头	36
2.4.10 脚本	36
2.4.11 材料库	37
2.4.12 子模型设定	40
<u>3. WAND 打印机管理器</u>	<u></u>
3.1 WAND 界面	42
3.2 以太网连接	
3.3 设置以太网静态 IP 连接	46
3.4 WıFı 连接	
3.5 设置打印机无线网静态 IP 连接	52
3.6 设备初始化	54
3.7 打印材料监控	55
3.8 设备打印、暂停和停止	55
3.9 打印任务管理器	59

1. UP Studio 3

UP Studio 3 是太尔时代公司最新研发的 3D 打印软件,它集模型显示和编辑、打印工艺参数设计、分层、设备管理功能于一体,方便用户操作。

1.1 软件介绍

为使您更好的了解并使用 UP Studio3 软件,本节主要对软件的各个功能模块进行 说明。

当您每次打开 UP Studio 3 软件后,都会发现有两个软件界面被同时打开,一个是当前【三维模型切片软件】,主要负责对于三维模型的编辑与工艺参数设置工作,另一个则是【Wand 打印机管理器】,负责连接、管理 3D 打印机,并控制打印制作过程。

1.2 软件功能

1. 模型显示:支持 stl、up3、tsk 等模型格式,对大模型支持非常好,界面流畅,且 优于同类软件。

2. 模型编辑: 支持模型修复, 模型旋转、平移、缩放、合并、复制等操作。

3. 模型打印:该款软件界面友好,能很好的支持 UP 系列打印机。

1.3 软件特色

1. 可同时打印不同参数模型:通过最新文件格式(.tsk)的支持,您可以根据零件属性设置打印参数,并在一个打印任务中载入不同的打印参数的 tsk 模型,比如不同的打印层厚、填充、支撑等参数设置,然后一起开始打印,这为您提供了无与伦比的打印体验。

2. 预览打印路径:强大的打印路径预览功能,而且可以设定在特定层暂停打印。可将当前模型文件转换为.tsk 文件格式,方便以后再次使用。

3. 支持第三方材料管理:支持国内外优秀的第三方材料,通过丝材打印参数管理器,即可实现相应材料参数的设置与修改,同时可进行加密处理,以防止未经授权的改动。

4. 打印队列与连续打印:软件可同时管理多组模型打印状态,通过对当前打印列表的管理,你可以轻松掌握相同设备不同打印队列状态,从而轻松实现自动连续打印的运行效率。

2. 三维模型切片软件功能说明

UP Studio 3 切片软件界面主要分成【工程文件栏】、【工艺参数设置栏】、【快捷 菜单栏】、【软件工具栏】和【操作视窗】五个功能区。

1. 【工程文件栏】

【UP Studio】 - 包括【偏好设置】和【检查更新】等内容。 【文件】 - 包括常用的【打开】和【保存】等内容。

名称	描述

【Tiertime】	包含软件开启预设模式的选择。
【匹配打印机型号】	包含太尔时代公司研制的相应型号的 3D 打印机。
【匹配喷嘴】	包括打印机喷嘴直径为 0.2mm、0.4mm、0.5mm 等 七种型号。
【匹配材料】	可匹配的打印材料类型,如:UP Fila ABS、PLA、 TPU。等
【打印层厚】	当前模型打印层厚。

3. 【工艺参数设置栏】

这个部分是切片软件最核心的部分,共分为【基础】、【进阶】和【专家】三种模式,工艺参数开放程度逐渐递增,您可以解锁更多隐藏参数信息。

4. 【软件工具栏】

这里包含三维切片软件中最常用的模型查看、编辑工具等,如:【位移拾取的模型】、【旋转拾取的模型】、【缩放拾取的模型】和【自动摆放模型】等功能,使您可以非常方便的对模型进行调整。

5. 【操作视窗】 - 可使用鼠标控制模型摆放, 并实时显示当前模型操作的进程。

2.1 工程文件栏

2.1.1 关于 UP Studio3

您可以在【工程文件栏】中的【关于 UP Studio3】中,了解当前软件的版本号以及 更新时间。

UP Studio3

Version 3.2.1 (2021.09.08 15:26:52) Copyright © 2021 年 TierTime. All rights reserved.

确认

1. 偏好设置

您可通过【工程文件栏】中的【偏好设置】,根据自己的使用习惯,对软件进行调整。

偏好设置	-				
语言:	简体中	·文	•		
	自动摆	放	~	自动加载	
	单位:声	讨		高级界面	
	联机模	ΞĊ			
重置设置	1:	重置			
缓存文作	# :	文件夹	清	Ŷ	
					确认

7

【语言】- 可通过下拉菜单,选择适用的语言。需要将切片软件重启,新选择的语言 才能够生效。

名称	描述
【自动摆放】	每次导入模型时,模型都将自动摆放在打印平台中间。
【自动加载】	每次打开软件时,自动导入最近一次工程文件的模型数据。
【单位:XX】	选择计量单位。
【高级界面】	激活【菜单预设栏】中高级参数选项。
【联机模式】	每次打开软件时,Wand 打印机管理器自动连接设备。
【重置设置】	重置层片颜色设置、default 通用配置、检测升级状态。
【缓存文件】	【文件夹】:切片过程时产生的缓存数据或文件自动保存在 指定路径下。 【清空】:清空缓存数据或文件。

2. 检查更新

在联网状态下,自动更新 UP Studio 软件为当前最新版本。

3. 退出 UP Studio3

关闭 UP Studio3 软件。

4. 文件

UP Studio3	文件			
Tiertim	:	打开 保存	Ctrl+O Ctrl+S	۲
۲	:	打开工程文件 保存工程文件		
► Calib	1	最近文件	>	
	-	校准模型		

名称	描述
【打开】	在文件夹中打开模型数据文件。
【保存】	在文件夹中保存模型数据文件。
【打开工程文件】	可在文件夹中打开带工艺参数的模型工程文件。
【保存工程文件】	可在文件夹中保存带工艺参数的模型工程文件。
【最近文件】	显示近期打开的模型数据或工程文件。
【校准模型】	载入测试校准的模型数据文件。

2.2 快捷菜单栏

【快捷菜单栏】是 UP Studio 软件中当前设备状态。包括四个部分: 【设备型 号】、【喷嘴直径】、【材料类型】和【模型分层】。

🕼 បក Sudio	3.2.1				
Tiertime		⊙ 0.4mm •	• PLA	≡ 0.25mm •	
• • •	UP / UP2	0.2mm	PLA	0.05mm	
	UP mini 1/2	0.3mm	ABS	0.1mm	0.2mm 0.3mm 0.4mm 0.5mm
	UP Box	0.4mm	ABS+	0.15mm	1.75mm
UP 300 / UP 300D	UP Box+	0.5mm	TPU	0.2mm	
	Cetus	0.6mm	PVA	0.25mm	
	Cetus H	0.8mm	301	0.3mm	
	up plus3	1.0mm		0.35mm	
	UP200	•		0.40mm	
UP Box / UP Box+	8 o	9		0.5mm	
	0	*		0.6mm	
	0			0.7mm	
	打印机管理	*	E	0.8mm	
Tiertime X5		<i>e</i> ,		1.0mm	2
1					

2.3 软件工具栏

【软件工具栏】是 UP Studio 软件中所有对模型物理属性操作命令的汇总,主要包括五个方面的部分:【载入与分层模型工具】、【模型编辑工具】、【查看模式工具】、【模型修复与优化工具】和【模型编辑重置工具】。

2.3.1 载入与分层模型工具

(1) (1) (1) UP Studios 3.2.1 (1) Studios 3.2.1	入	模型:选择文件夹口	中的三维核	刺数	据进行导入。	- [- ×.
Tiertime I≣ UP300 ▼ @	0.4mm	▼ ⊕ PLA ▼ ≡ 0.25mm				O F	ā (ē)
Default							
▶ IID亚鹤 ett	L+						
() () () () () () () () () () () () () (9	🛐 Open fi <mark>e</mark> s		×			
	EQ.	← → ↑ ↑ 🦲 《 整理褒材 > 整理过 > 模型文件	 2 提案"模型文件" 	م			1
		组织 ▼ 新建文件来	82				
		& MACHENIKE A SEE	德次日期				
	÷	■ 此用版 GA Part_5_fixed.stl	2016/2/27 22:50	3D 对象			
	C	参 WPS网盘 file Part_6_fixed.stl	2016/2/27 22:50	3D 对象			
	17	3E 对象 La Root_Vase.stl	2015/11/2 15:33	3D 对象	¥		
		I 规页 La Starlet_Vase_A1.STL	2016/9/9 10:53	3D 对象			
	> 4	Starlet Vase_B1.STL	2016/9/9 10:53	3D 对象			
)		☆当 □ T int l l ap. d	2017/2/11 15:26	3D 对象			1
			2015/11/2 17:03	30 20 20			
	0		2015/9/30 13:32	30 対象			
			2015/9/30 13:32	3D 712			
	Ø	the waveVase 1.st	2015/11/2 16:57	3D 748			
	c1	waveVase 200mm.st	2015/11/2 16:57	3D 对象			
			2015/7/11 12:22	3D 对象			
	*	Yoo_Hoo_Bomb_Minion.st	d 2014/5/27 14:22	3D 对象			
		→ 文件筆份 (H) 【▲ 宝剑.stl	2016/7/23 22:57	3D 对象		-	1
	00		2010 11110 10.10	30 344			10
		文件名(N): UP平軸 sti	> 3d models(*.st)	*.up3 *.msh) ~	LINITTIII		
	•		打开(0)	RV III		11	
	0		11/(0)	- Internet		- /	
	6.						
		分层				模型	层片

(2) 一分层 3D 模型并保存:根据设置的工艺参数,将三维数据模型切片分层 成.tsk 格式文件。

(3) 预览分层结果:将三维数据模型切片分层成.tsk 格式文件,注意,用户 此时仍可以对.tsk 模型数据文件做修改,但需另行存储。

2.3.2 模型编辑工具

(1)

- 点击 X、Y 或者 Z 轴向、并移动鼠标; •
- 选择弹出面板上的轴向及相应移动的尺寸; •
- 选择弹出面板上的轴向,并在横线上输入位移的尺寸。

▲:将模型放置打印平台上。 UP Studio3 3.2.1 II UP300 • 0.4mm 3 6 UP平躺.laver C + \$ 2 0 0 đ × 88 Ш • e 层片

- C 旋转拾取的模型:选择一个 3D 模型,可通过如下方式旋转模型: (2)
- 点击 X、Y 或者 Z 轴以及相应的旋转箭头、并移动鼠标;
- 选择弹出面板上的轴向及相应旋转的比例;
- 选择弹出面板上的轴向,并在横线上输入旋转的角度。

☆:选定的模型面放置在打印平台上。

Tierti/Tie

(3) [▲] 缩放拾取的模型:选择一个 3D 模型,可通过以下方式进行缩放:

- 选择弹出面板上的轴向及相应缩放的比例;
- 选择弹出面板上的轴向,并在横线上输入缩放的比例。

: 缩放时链接所有轴,将所有3个轴向按照同比例进行缩放。当链接解锁后,可选择单一轴向进行缩放。

(4) 镜像拾取的模型:可沿选定轴向镜像模型对象。

(5) 自动摆放模型:打印平台上所有模型将进行自动排列,以使其均匀分布到打印平台之上。

2.3.3 查看模式工具

(1) 查看示图:可在不同视角中进行快速切换。

(2) 设置视图模式:可使模型以【实体模式】、【表面模式】、【实体线框模式】和【透明模式】进行显示。

(3) d XYZ 的剖面视图:选择沿指定轴向的截面检查模型结构。

Tiertime III UP300 ▼ ⊕ 0.4mr	m ≠ ⊕ PLA +	# PVA # # 0.25mm *		
	C		1	- 0 E O
Oefault:				
+ UPF編att ● © ② 型 + - で で の の の の の の の の の の の の の の の の の	I			現変構成: ④ 自动模式 ⑤ 50歳式 ⑥ 50歳式 ⑥ 50歳式 ◎ 50歳式 ◎ 55歳型 ◎ 55点型 ◎ 55 ◎ 5
* # @	X Y Z X 104.82			

2.3.4 模型修复、合并与支撑编辑工具

× 修复模型错误:选定模型后,可修复模型网格的简单缺陷。 (1)

设计模型支撑:打开支撑编辑器并为模型设置支撑。

UP Studi	tudio3 o3 文:	3.2.1 ¥												25	- 0	×
Tier	time	I UP300	*	⊙ 0.4mm	-	PL	A	* 🛞 PVA	-	≣ 0.25mm	-			- 4	3 6	۲
« +		支撑角度:30 支撑斜度:0	Ŧ	顶部层数:4 最小面积:5	-	悬点 晶小	延伸:1 长 度:5							預览標	[式: 白头细子	
	选择 序 ⁵	62/62支撑 号 类型	高度	面积	启用	显示	移除	ėm							3D模式 论即模式 线模式	
+ c	2	Surface Surface	101.11 109.00	152.3 24.8	3	9 9 9	-	禁用							余: 线类型 喷头 速度	
₽ **	4	Surface Surface	109.00 91.57	24.8 21.8	-	6	1	隐藏		ſ				颜色被	品度 記定:	
) (0)	7	Surface Surface	91.38 102.08 91.38	42.0 15.4 42.0	-	9 9	-	重置							919日即 内轮廓 真充轮即	× V V
9 9	9 10	Surface Surface	102.08 67.33	15.4 41.5	4	0	-	编辑				110			1部/底部 内部填充 支撑轮廓	
*		第四 🔽 🤻	面 🔽	2 顶部	☑ 主体		全部	退出	-	C.L			-		2)集支撑 支撑墙元 医座轮廓	
•					17				l			1			建作曲线	
©																
											1-1					
	指令	R _		•	层片:	•				0			 	 - 棋	型屋	店

2.3.5 支撑编辑

【设计模型支撑】即为支撑编辑器,单击此命令后,会计算并生成模型所有可能的支撑结构,您可以根据需要启用或禁用特定的支撑结构的部位,而支撑编辑的结果将实时显示在模型上。

支撑类型:

(1) 【支撑列表】

序号	类型	高度	面积	启用	显示	移除
1	Surface	9.33	18.5	-	۲	-
2	Surface	9.33	18.5	-	۲	-
3	Surface	-0.90	1135.3	-	۲	-
4	Surface	88.79	40.7	-	۲	-
5	Surface	71.99	9.68	-	۲	-
6	Surface	71.99	9.68	-	۲	-
7	Surface	93.86	56.4	-	۲	-
8	Surface	46.69	123. 3	-	۲	-
9	Surface	85.45	0.650		۲	-
10	Edge	72.91	20.5		0	-

名称	描述	
【启用】	启用或删除支撑。	
【显示】	隐藏/显示支持,不影响其打印设置。	
【移除】	从列表中删除支撑,但不影响其打印设置。	

(2) 【支撑筛选器】

【筛选器】支撑筛选器是查找或选择特定支撑的便捷方法,可显示用户设定的筛选 条件下的支撑,这些条件是:

- 支撑类型
- 支撑启用/未启用
- 支撑表面积
- 在 X、Y、Z 空间的位置。

2.3.6 模型编辑重置工具

(1) 回退模型编辑指令,例如位移/旋转/缩放,仅对模型的位移、旋转和缩放 进行上一步还原。

(2) 重置模型回到起始状态:删除对模型做出的所有编辑修改,并返回到载入 软件中的起始状态。

2.4 工艺参数设置

2.4.1 界面介绍

【工艺参数设置栏】是为三维数据模型进行打印工艺参数设置和切片分层的关键 工具。

名称	描述
基础工艺参数配置	缺省工艺参数【Default】是太尔时代机型的基本工艺参数,建议用户不要修改。如需修改缺省工艺参数,可增加一个基础工艺参数配置。
当前主模型工艺参 数设置	点击以编辑该模型的打印设置文件,更改的设置仅适用于 该模型,并且不会影响列表中的其他模型。
子模型参数设置	子模型的工艺参数设置。
模型基本信息	模型的基本信息,包含三角面片数、顶点数、体积、尺 寸、表面积等信息。
保存模型	将模型保存为.UP3 格式的文件。
删除模型	从工艺参数设置栏中删除模型。
添加子模型	添加子模型,请参考下面的"通过子模型进行打印优化"部分。

添加子模型参数配 置	设置 Z 轴高度区间,并配置相关子参数集,可更改填充密度、轮廓打印速度等。请参阅下面的"通过子模型进行打印优化"部分。
与参数配置关联	链形图标表示,更改当前工艺参数设置将影响上一级参数 配置文件的值。如果点击链条变为断裂,则更改当前配置 不会影响上一级的参数配置。

链形图标 表示当前参数设置是否与上一级参数配置天联,既更改当前配置是在 会影响上一级的参数配置。

如需增加一个基础工艺参数并做相应修改,请按照如下步骤:

Default	1. 点击 Default 图标,打开 【参数管理】。
befault 224: Descriptioin about the config default 224: Descriptioin about the config サーロ	2.选择一个缺省参数配置作为 参数拷贝参照,点击【+】。

拷贝 default : 新参数名称 名称: <u>实验基础参数</u> 描述: <u>TEST01</u> 取消 确认	3. 为基础参数命名。
<u> 实验基础参数</u> 224: TEST01 □ + -	4. 选择新基础参数,请点击 【确认】。
实验基础参数	5. 点击齿轮,编辑基础参数相 关。具体参数设置请参考下面 章节的介绍。
默认 应用 取消 确认	6. 点击【确认】保存基础参 数。

【基础模式】

打印设置类似于UP Studio 2.x版本。虽然打印设置得到高度优化, 但可更改的参数有限,可通过快速 选择基本打印参数来获得出色的打 印质量。

【进阶模式】&【专家模式】

将逐级开放更多的打印参数,为 用户提供了更多的打印自由度,但 是可能会有错误的设置的风险,从 而导致打印失败或缺陷。

完成配置文件的设置后,点击 【应用】保存并点击【确定】以退 出当前界面。

2.4.2 实体模型分层区域说明

模型实体进行切片分层时,三维数据模型将被划分为不同的区域或实体,并且每个区域或实体的打印设置都可以单独调整。

名称	描述
轮廓	属于三维数据模型的最外侧表面或壳,而其外部轮廓内的 所有轮廓都属于内部轮廓。
内填充	轮廓区域内通过材料进行填充以支撑模型轮廓结构。
顶部/底部	打印模型主体结构的"顶层"和"底层"部分。
支撑	自动生成的结构,用于支持模型悬垂的部分。
底座	在模型和支撑下方的结构,可提高模型和支撑与打印底板 的附着 力,并可补偿打印底板表面,以实现平台纠偏的功能。

2.4.3 打印工艺参数分类说明

【工艺参数预设栏】中包含八种关键的参数类型,分别是【分层】、【路径】、 【特殊】、【打印】、【打印机】、【喷头】、【脚本】和【材料库】。

*注意:需要在【偏好设置】中勾选【高级界面】后才会出现【进阶模式】和【专家 模式】,否则只允许您在【基础模式】下进行操作。

分层	路径	特殊	打印
打印机	喷头	脚本	材料库
专家	l] 全部	🗌 已修改

2.4.4 分层

菜单	单位	描述			
	したした。 「「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」 「				
层厚	mm	每层的标准厚度,厚度越大,打印速度越快,细节呈现越低。			
最大层厚 (自适应分 层相关功 能)	mm	设置自适应分层的最大层厚度。自适应层是根据悬垂角度自动 调整图层厚度。			
		调整比例越大,从厚层到薄层的自适应分层的梯度越少。总体而言,当比率增加时,算法将更倾向于使用较厚的图层。			
调整比例 (自适应分 层相关功 能)	不适用	Adaptive Ratio → → → → → → → → → → → → → → →			
自定义	高度区 间为 mm	度)))*比率 自定义高度区间的分层厚度。允许用户定义特定高度范围内的 特殊分层厚度(区别于标准层厚): 语法:[开始高度,结束高度]图层厚度 例如:[0,10]1.0[25,35]1.0 注意开始高度和结束高度的单位均为mm。			

		 ✓ 对于未由定制层厚度定义的区域,将使用标准分层厚度设置。
		 ◆ 分层的优先级:1)自定义分层;2)自适应分层;3)标 准分层。 <u>*注意,在新版软件中,自定义层厚的功能在下面子模型章节</u>
收公安府		
站住见反 从如於商	mm	小
小 加 花 本 が 向	mm	小印化原则线见
項 「 項 の 1 1 1 1 1 1 1 1 1 1 1 1 1	mm	
の見ていていていていていていていていていていていた。	mm	
広印の方	 	际运线见
<u> </u>	 	内填兀的线见 古惯的代盘
出朱乂择	mm	
支撑间隔	mm	文 文
顶部和底部		
角度	ø	确定生成顶层或者底层的角度阈值。

Tierti/Tie

基准宽度	mm	底座前2层的线宽。
扩展	mm	设定底座的扩展值,即从模型底面的外部轮廓外延扩展多少比 例为底座区域。
模式	不适用	底座的打印方式, Profile 仅适用于太尔时代的打印机, 由于底 座是由打印机生成, 因此这个打印方式在软件中不可见。 。 底座打印方式 Profile Hatch Offset

2.4.5 路径

菜单	单元	描述
		路径模式
轮廓	不适用	轮廓数量 1 4
填充密度 (%)	%	内部的密度, 100%=实体填充, 0%=无填充 内部填充密度 15% 30% 80%
支撑密度 (%)	%	支撑柱的线密度, 该值越大, 支撑越稳定, 但使用的材料 也越多, 去除的难度也越大。

Tierti/11e

		支撑密度
	mm ²	10 50 小工业店的区域收进 100% 持方打印
- 與俩区哟	11111	小丁此值的区域将被100%填元打印。 植杂路 径
顶部/底部填充	不适用	选择顶部/底部的填充图案:线(Lines)、曲折(ZigZag) 和偏移(Offset)
内部填充	不适用	选择内部填充的填充图案:线(Lines)、曲折(ZigZag)、 偏移(Offset)和六边形(Hexagon)
支撑填充	不适用	选择支撑填充的填充图案:线(Lines)、曲折(ZigZag)和 偏移(Offset)
填充轮廓	不适用	选择填充轮廓的打印方式: 无(None):无填充轮廓 始终(Always):始终打印填充轮廓 交替(Alternate):交替打印填充轮廓,此选项选择会增加 填充物与周边之间的接触表面积,从而增加粘结强度
支撑轮廓	不适用	在支撑柱上増加一个轮廓,以増强支撑的稳定性,但可能 会使支撑更难以移除。
填充角度	Ø	填充图案的起始角度 填充角度 45° 90°
角度增长	ø	每层填充角度递增 角度增加= 30°

		稀疏填充的角度
		15° 60°
轮廓/填充重叠	不适用	轮廓与填充的重叠率
底部重叠	不适用	底层的轮廓与填充的重叠率

2.4.6 特殊

特殊选项		
填充模式	不适用	填充 (Fill) : 轮廓+填充+顶部/底部 外壳 (Shell) : 轮廓+顶部/底部 (无内填充) 花瓶 (Vase) =仅周边轮廓 (无内填充、无顶部/底部)
		填充模式
		Fill Shell Vase
公差	mm	XY 轴的尺寸公差,例如:+0.1=X 和 Y 平面的尺寸都增加了 0.1mm。
	mm	模型间隙调整值。例如原间隙为 0.5mm,如果连接间隙为 1.0mm,那么 1.0mm 以下的间隙会被融合;如果连接间隙 为 0.1mm,那么 0.1mm 以下的间隙才会被融合。
		模型原间隙=0.5mm
连接间隙		
		_连接间隙=1.0mm 连接间隙=0.1mm
孔收缩		

Tierti/11e

(仅适用于零件	上的 <u>垂直</u>	<u>31</u> ,扩大孔径以抵消孔在打印过程中的收缩影响)
最大半径	mm	进行收缩补偿的孔半径阈值,大于此直径值的孔将被忽略。
比率	不适用	该值越大,对孔的收缩补偿越大。 收缩和半径的尺度,收缩尺寸=比率*(1-半径/最大半径)
最大收缩	不适用	设置最大收缩补偿比例
实体 ID		
轮廓		
填充轮廓		
顶部		
底部	打印模型	型的不同区域都标有实体 ID,以便可以将它们分配给不同的
内部填充	喷头进行	亍打印。需要在"喷头"设置中指定实体 ID。
密集支撑		
支撑填充]	
底座		

2.4.7 打印

		速度
轮廓	mm/秒	轮廓的打印速度
填充轮廓	mm/秒	内部轮廓的打印速度
顶部	mm/秒	顶部的打印速度
底部	mm/秒	底部的打印速度
内部填充	mm/秒	填充的打印速度
密集支撑	mm/秒	支撑的打印速度
支撑填充	mm/秒	支撑填充的打印速度
抖动		短路径的打印速度
抖动长度	mm	定义短路径的最大长度,小于这个长度值的为短路径
底座基底	mm/秒	底座第一层的打印速度
底座	mm/秒	底座(除第一层外)的打印速度
跳转	mm/秒	喷头跳转的速度(即喷头在非打印状态下的运动速度)

		温度调节	
轮廓调节	°C	微调(升高或者降低)打印轮廓时的喷嘴温度	
填充调节	°C	微调(升高或者降低)打印填充时的喷嘴温度	
支撑调节	°C	微调(升高或者降低)打印支撑时的喷嘴温度	
底座调节	°C	微调(升高或者降低)打印底座时的喷嘴温度	
	支撑剥离		
粘合强度	%	设置模型与支撑之间的粘结强度。	
(%)			
Z 轴跳转提升			
距离	mm	跳转时喷头升起的距离	

挤出比例		
1	直大于1表	示增加挤出量,值小于1表示减少挤出量。
轮廓	不适用	设置轮廓的挤出比例
填充轮廓	不适用	设置内部轮廓的挤出比例
顶部	不适用	设置顶部的挤出比例
底部	不适用	设置底部的挤出比例
内部填充	不适用	设置填充的挤出比例
密集支撑	不适用	设置支撑的挤出比例
抖动	不适用	设置短路径的挤出比例
底座基底	不适用	设定底座第一层的挤出比例
底座	不适用	设置底座(除第一层外)的挤出比例

起始点优化		
		设置每层的起始点,分为:
		1. 固定位置 (Fixed)
		2. 中心 (Center)
		3. 最小 (Min)
固定起始点		4. 最大 (Max)
		5. 上一层的(Prev Layer)
		6. 随机(Random)
固定起始点 X		在 X 坐标上定义起始点
固定起始点 Y	1	在Y坐标上定义起始点
	1	设置轮廓的起始点类型,分为:
		1. 最近的(Nearest)
		2. 凸起的(Convex)
化即吃灯品		3. 凹陷的 (Concave)
		4. 重合的(Coincide)
		5. 随机的(Random)
接头交叉%	%	接头线宽的%
接头延伸	mm	接头延伸到填充区域的程度。
接头交叉		是否使接头连接成为交叉路径。
填充优先		目目不生打印内店本
(Infill First)		
减速		
最慢速度	mm/秒	定义短路径的最低速度。
短轮廓	mm/秒	定义短轮廓的长度,小于该值则速度降低到最慢速度。
	c	定义每一层打印必须消耗的最短时间,用以确保模型打印
	5	的每一层有足够的冷却时间。
∽□油座∞	0/_	打印第一层的时候降低速度的比例。放慢第一层打印的速
	/0	度可以提升层对平台的附着力,提高打印成功率。
第一层送进比	%	 打印无底座的第一层时的送讲比例
例	,,,,	

	其他选择
平台预热	打印开始之前预热平台最多 15 分钟。在 15 分钟内,平台 将在达到目标温度后立即开始打印。
休眠	当前打印作业完成后,将初始化打印机。初始化后,打印 机将消耗更少的电量并产生更低的噪音。

2.4.8 打印机

打印机配置。		
打印机		打印机型号选择
制造商		打印机品牌/生产商
模型 ID		打印机型号
		原点
Х	不适用	原点的 X 坐标
Υ	不适用	原点的 Y 坐标
Z	不适用	原点的 Z 坐标
		构建尺寸
Х	mm	X轴打印范围
γ	mm	Y轴打印范围
Z	mm	z轴打印范围
加速度		
轮廓	mm/秒 ²	打印轮廓的加速度
填充	mm/秒 ²	打印填充的加速度
支撑	mm/秒 ²	打印支撑的加速度
跳转	mm/秒 ²	非打印运动加速度

2.4.9 喷头

	喷头 1
材料	从材料库中选择材料
喷嘴直径	选择喷嘴直径
比例因素	喷头的挤出量表(结果类似于 E 步)
实体 ID	输入为此喷头分配的实体编号
X偏移	喷嘴的 X 轴的偏移值,用于多个喷头的喷嘴对齐
Y偏移	喷嘴的 Y 轴的偏移值,用于多个喷头的喷嘴对齐
Z 偏移	喷嘴的 Z 轴的偏移值,用于多个喷头的喷嘴对齐
切换码	用于切换喷头的 G 代码
	喷头 2
	与喷头1菜单说明一致,在此略去

2.4.10 脚本

	 None Print Layer Path Line
打印开始 打印结束 层片开始 层片结束 轮廓结开始 填充结开始 支撑结开始 这撑结开始 路径结束 路径	 脚本插入位置。用户可以在这些位置插入 Gcode 以实现自定义功能。接受的 Gcode: G0:线性移动 G1:快速线性移动 G4:停顿 G28:移动到原点(原点) G90:设置为绝对定位 G91:设置为相对定位 G92:设置位置,仅支持 A 轴复位。 M0:停止或无条件停止 M1:睡眠或有条件停止 M2:程序结束 M2:程序结束 M2:暂序 SD 打印 M42:切换 I/O 引脚;例如。M42 P15 S0 或 S1,端□ 15, s0 = off, s1 = on M73:设置构建百分比 M80:ATX 开机 M81:ATX 关机 M82: 將喷头设置为绝对模式 M83:将喷头设置为相对模式 M92:设置 axis_steps_per_unit M104:设定喷头温度 M109:设置喷头温度并等待,示例 M109 S215 M140:设置床温(快速) M141:设置 箱温(快速) M190:等待床温达到目标温度 M11:等待箱温达到目标温度 M206:偏置轴

2.4.11 材料库

材料	选择材料参数集
类型	材料类型:只能从预设类型中选择。
材料 ID	匹配材料的唯一编号。例如,Tsk 文件的材料 ID 必须与打印机的材料 ID 匹配才能进行打印。
制造商	

材料直径	mm	丝材的直径,此值将影响挤出度。		
密度	克/cm ³	材料密度,用于软件计算。		
成本/公斤	¥/ 公 斤	用户可定义以供自己参考。		
		打印		
速度比	不适用	可以同时调整所有速度设置的比率。		
最大基底速度	mm/秒	打印底座第一层的最大速度。如果比该值快,将使用该 值。		
速度	mm/秒	回抽的速度越大,丝材在喷嘴中回撤越快,那么跳转过程 中不太可能产生拉丝效果。但这也会给挤出机械系统带来 额外压力,最佳速度取决于硬件。		
最大长度	mm	路径结束时的最大回抽长度		
最小步长	mm	触发回抽的距离阈值,如果运动距离小于此值,则不会产 生回抽。		
比率	不适用	实际回缩长度=比率*步长。		
		温度		
打印	°C	打印基础温度		
备用	°C	当多喷头工作时,空闲喷头待机时的温度		
平台	°C	打印平台温度		
		收缩比(%)		
Х	%	X 轴补偿冷却后材料的收缩率		
Υ	%	Y轴补偿冷却后材料的收缩率		
Z	%	Z 轴补偿冷却后材料的收缩率		

除了软件中内置的太尔时代的打印材料外,您可以通过如下步骤为材料库添加第三方 材料:

	分层	路径	特殊	打印	
	打印机	喷头	脚本	材料库	
	专家 材料 ①	_	□ 全部 TPU	□ 己修改 ▼ + -	1. 点击【+】。
	类型		TPU	v	
	材料ID		66286		
_					
	输入新名	字			
	Test Fil	ament			
			取消	确认	2. 输入材料名称

材料 ①	Test Filam… 🔻 🕂 —
类型	PETG 🔍
材料ID	67082592
制造商	Company A

2.4.12 子模型设定

用户可以为当前主模型添加子模型,或者针对当前主模型的某个 z 轴高度区间配置子参数集。

名称	描述
保存模型	将模型保存为.UP3 格式的文件。
删除模型	从工艺参数设置栏中删除模型。
添加子模型	添加子模型,请参考下面的"通过子模型进行打印优化"部分。
添加子参数配置	设置 Z 轴高度区间,并配置相关子参数集,可更改填充密度、轮廓打印速度等。请参阅下面的"通过子模型进行打印 优化"部分。

与主模型配置关	链形图标表示,更改当前工艺参数设置将影响当前主模型参数配置文件的值。如果点击链条变为断裂,则更改当前配置
联	不会影响当前主模型的参数配置。
与主模型配置关	数配置文件的值。如果点击链条变为断裂,则更改当前配置
联	不会影响当前主模型的参数配置。

3. Wand 打印机管理器

UP Studio 3 是一个包含两个功能模块的软件: 【三维模型切片软件】和【打印机 管理模块】 (模块名为" Wand") 。

【Wand 打印机管理模块】处理与打印机通信、打印机设置和驱动打印的功能。因此,当模型文件分层后,您需要将分层的数据文件(.tsk)保存到硬盘驱动器,然后使用打印机管理模块(Wand)将.tsk 文件发送到打印机。

3.1 Wand 界面

1. 启动【打印	UP Studio 3 在开启时会同时启动三维模型切片软件界面和 Wand 打
机管理】	印机管理器,如果意外关闭打印机管理器,也可以通过点击【打印
	机管理】启动。

	回 : 打印平台当前温度
	X: 40.0 Y: 1.0 Z: 0.0 E: 170.4 : 当前喷头的轴向坐标。
4. XY 轴控制	打印平台图,点击正方形以将喷头移动到平台上相应的 XY 位置。红色方块,表示喷头当前位置。
5. Z 轴控制	z轴:横线表示打印平台的当前z轴位置。
	74.2
	▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
	5247g · : 剩余的材料重量
	◎0.4mm ·: 喷头的当前喷嘴直径。
6.打印机操作	初始化: 点击初始化打印机
	_{底板预热} :点击打印平台预热
	喷嘴对高: 点击设置喷嘴高度值
	* 点击进行打印机平台 9 点矩阵调平
	打印: 加载.tsk 文件进行打印
	^{停止} : 立即停止打印机当前操作。
7.打印机信息	列出已连接打印机的型号、SN 序列号、编号、喷嘴、累计使用丝材 重量、喷嘴高度值。

3.2 以太网连接

您可以通过 UP Studio 3 软件或者打印机的触摸屏设置以太网连接。

将网线插入 UP 300D 打印机侧面的以太网插口,同时将网线的另一端连接到局域网 交换机上,一个以太网图标将出现在触摸屏上。

将计算机连接到同一个局域网交换机上,打开 UP Studio 3 软件

第34年 1: 40℃ #: 35℃ 3: 20.0 1: -150 第36年 第30.0 1: -150 -150 -150 第36 第36 1: -150 -150 -150 第36 1: -150 -150 -150 -150 1: -150 1: -150 -150 -150 -150 1: -150 -100 -100 -100 -100 1: -150 -100 -100 -100 -100 1: -150 -100 -100 -100 -100 1: -150 -100 -100 -100 -100 1: -150 -100 -100	5. 双击左上角设备编号查看连接状态。
打印机设置 名称: 551071 SX: 551071 类型: U2:000 版本号: 309	6. 设备连接状态。
內存卡 : Reset To Default Rtm 助认	

3.3 设置以太网静态 IP 连接

为方便用户连接,打印机在出厂时设置为自动获取 IP 地址。如果您需要根据自己的网络情况更改网络设置,请按照下面的步骤设置:

请先使用 USB 电线连接打印机与计算机(用户可同时将以太网和 USB 连接计算 机),并打开 UP Studio 3 软件

3.4 WiFi 连接

Tierti/Tie

您可以通过 UP Studio 3 或者打印机的触摸屏设置 WiFi 连接。

请确认 UP300D 打印机和计算机连接在同一个无线热点下或者在同一个网段下。 然后先使用 USB 电线将 UP 300D 与计算机连接,并打开 UP Studio 3 软件进行设置。

市田田 1: 40℃ 1: 35℃ 2: 0:0 1: -150 日 日 日 日 日 日 日 日 日 日 1: 0:15 1: 0:15 1: 0:15 日 1: 0:15 1: 0:15 1: 0:15 日 1: 0:15 1: 0:15 1: 0:15 日 1: 0:15 1: 0:15 1: 0:15	4. 点击左上角设备编号查看连接状态。
 Tier4 yanfa yzj-tplink02 Tier-m2 yzj-tplink01 	5. 选择一个无线网热点。
Tier4 passowrd : <u>XXXXXXXX</u> 取消 确认	 输入无线热点的密码(如需要),并点 击确认。至此打印机的 WiFi 热点连接设 置完毕, Wand 模块将关闭。
	7. 确认计算机与打印机连接同一个无线热 点,并将 USB 电线断开。

3.5 设置打印机无线网静态 IP 连接

为方便用户连接,打印机在出厂时设置为自动获取 IP 地址。如果您需要根据自己的网络情况更改网络设置,请按照下面的步骤设置:

请使用 USB 电线连接打印机与计算机(用户可同时将无线网和 USB 连接计算机),并打开 UP Studio 3 软件。

3.6 设备初始化

E med William Manager	
1107 1107 1107	
24.4	
104 X 2011 X	
A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	
打印印刷的金代中,请等待	
10	
New North Addres of the Address of the	
INDU	
LP3002(ar.570261) 编号:10115 世紀村 2.704g 初期11至-228.86mm	
R Diana	
A DESCRIPTION OF A DESC	
And a second	
And a second	

3.7 打印材料监控

UP studio 软件中的【打印机管理器】目前只支持监控当前喷头材料的使用状况,例如:材料剩余重量等。如需对喷头和材料做诸如【挤出】或【撤回】等调试,则需要在打印机触摸屏端进行操作,相关操作请参见触摸屏操作相关内容。

喷头1			
PLA	•	500 g	•
⊙ 0.4mm	•		
喷头 2			
PVA	•	500 g	•
⊙ 0 4mm			

 PLA
 ▼
 : 当前使用材料类型,如 PLA 等。

 500 g
 ▼
 : 当前使用材料的余量,如 500g 等。

 ○ 0.4mm
 ▼
 : 当前使用的喷嘴直径,如 0.4mm 等。

3.8 设备打印、暂停和停止

1. 设备的打印制作 打开打印任务管理器

通过 Wand 软件传输打印任务时,	可点击【打印】调出	【打印任务管理器】.
Wand 3D Printer Manager		×

打印中 1% - 21h:53m				* : 98%		■: 100%	X: Z:	185.3 Y: -3 -228.0 E: 13011
		-	_	喷头1				
			228.0	PLA	Ŧ	7672 g	Ŧ	
			*	⊙ 0.4mm	Ŧ			
			~					
				喷头				
			~	PVA	Ŧ	7672 g	~	
			*	⊙ 0.4mm	Ŧ			
	V							
操作								
2-12-11. X2-11-12			Tabient Table?		-			
初始化、天团加热	恐 喷嘴对高	水平校准	模型仪/准	11 El 1	1号	停止		
tr¢n±n								

2. 载入打印任务文件

通过【选择文件】载入需要打印的.tsk 文件。

Wand 3D	Printer Manager							
? 260029								
打印色	务管理							
	名称	状态	创建人	总耗时	材料	重复	上传时间	操作
				/				
当期的	6劳 历史任务	清空	选择文件					退出

3. 模型打印

模型传输至打印机后,文件将自动添加至打印任务管理器中,随后开始进行打印制 作。

	Nand	3D Printer Manager									×
2											
	打印	P任务管理									
									Þ	† ↓	
				Unite	1h 0m	20 5a/DLA	0/1		Þ	t ↓	
			Failed	U			0/1	10-28 11:03:23	Þ	t ↓	
			. Fa 藏y	<u>+</u>	<u> </u>	1			Þ	t ↓	
			Prin	-		-		11-02 10:44:00		t ‡	
l					6任务到打印机	£	确认				
ŀ											

ľ	Wand 3D Pr	inter Manager								:
÷										
ſ	打印任务	管理								
L		名称	状态	创建人	总耗时	材料	重复	上传时间	操作	F
L	1	1_2	Printing	Sheji	5h20m	120.9g/PLA	0/1	11-05 15:36:28	▶ †	$t \times$
	当前任务	历史任务	清空	选择文件					ì	匙出

4. 设备的暂停

若在打印过程中需要暂停,例如更换材料,可使用【暂停】命令。

	Ξ
● 打印中 1% - 21h:53m ★ 98% ♥ 100% X: 185.3 Y: 2: -228.0 E:	-30. 0 13011903. 0
喷头1	
228.0 PLA • 7672 g •	
喷头	
✓ PVA ▼ 7672 g ▼	
♥ ⊙ 0.4mm ▼	
操作	
初始化 关闭预热 喷嘴对高 水平校准 模型校准 打印 暂停 停止	
打印机	
UP300 (sn:10115356) 编号 : 10115 总耗材 : 9.19kg 喷嘴对高 : 228.70mm	

如需继续打印,可点击【继续】来恢复打印制作。

打印中 1%-21h:53m				¥:98%		.100%	X: Z:	185.3 T: -30. -228.0 E: 1301190
		-	-	培头1				
			228.0	PLA		7672 g		
			A	© 0.4mm				
				184				
			~	PVA		7672 g		
	e.		8	⊙ 0.4mm		,		
操作								
初始礼 关闭预热	暗噴对高	冰平校准	模型校准	打印 雜約	t	停止		
*TED#0.								

5. 打印停止

如需取消打印制作,请单击【停止】即可。

打印中1%-21h:53m		t: 98%		 100%	X: Z:	185.3 -228.0	T: -3 E: 13013	0.0
		喷头1						
	228.0	PLA		7672 g				
		⊙ 0.4mm						
	~	10000						
		镜头		~		-		
	~	PVA	*	7672 g	*			
	8	⊙ 0.4mm						
					/			
操作								
Install Investel Install		-						
初始化 天时前热 耶難对語	水平松准 模型松准	31时	9 1 :	停止				
打印机								

3.9 打印任务管理器

若管理多个打印任务,可通过操作【打印任务管理】中的任务工具进行实现。

1. 当前任务

根据上传模型文件的顺序,【打印任务管理】会从上到下依次进行当前任务队列排 序,您可对任务队列进行编辑:

名称 状态 创建人 总耗时 材料 重复 上 1 1_2 Printing Sheji 5h20m 120.9g/PLA 0/1 11-09 2 1_2 Waiting Sheji 5h20m 120.9g/PLA 0/1 11-09	专时间 15:36:28 ► 15:38:16 ►	۵. ۱	操 ↑ ↑	操作 ↓	= t	×
1 1_2 Printing Sheji 5h20m 120.9g/PLA 0/1 11-03 2 1_2 Waiting Sheji 5h20m 120.9g/PLA 0/1 11-03	15:36:28 ► 15:38:16 ►	•	1	+11*	- t	×
2 1_2 Waiting Sheji 5h20m 120.9g/PLA 0/1 11-0	15:38:16 🕨	F	1	1	ţ	×

打印任务管理

	名称	状态	创建人	总耗时	材料	重复	上传时间	操作
1	1_2	Printing	Sheji	5h20m	120.9g/PLA	0/1	11-05 15:36:28	▶ † ↓ ×
2	1_2	Waiting	Sheji	5h20m	120.9g/PLA	0/1	11-05 15:38:16	► † ↓ ×

名称	描述				
【个】	提升选定任务的打印队列位置				
【↓】	降低选定任务的打印队列位置				
【×】	从打印列表中删除选定的打印任务				
[▷]	打印选定的打印任务				

2. 历史任务

执行过的打印任务将被转入【历史任务】,从上到下依次进行队列排序,并可对历史打印任务进行编辑或者添加到【历史任务】:

П	Wand	3D	Printer	Manager
---	------	----	---------	---------

2600	29 🗢 烤箱	旁300	+								
打印任务管理											
	名称	状态	创建人	总耗时	材料	重复	上传时间		搨	作	
1	Death Note Flattene	Failed	Unknown	39h 4m	239.5g/ABS240/A	0/1		+	Ť	ŧ	х
2	Jeep_Gladiator_body	Failed	Administra	7h 7m	62.9g/ABS(240)/	0/1	07-26 14:24:20	+	†	Ļ	×
3	Jeep_Gladiator_body	Failed	Administra	18h23m	195.0g/ABS(240)	0/1	07-27 10:19:20	+	t	ŧ	x
4	Jeep_Gladiator_body	Failed	Administra	18h23m	195.0g/ABS(240)	0/1	07-27 10:26:51	+	t	Ļ	x
5	Space_nest_nosupp	Failed	Administra	25h37m	258.1g/ABS(240)	0/1	07-28 09:50:57	+	t	ŧ	×
6	Rim_BWMmini_size_1	Waiting	Unknown	3h41m	19.2g/T240/T240	0/1		+	t	Ļ	×
7	Rim_BWMmini_size	Failed	Tier	7h11m	35.0g/ABS(240)/	0/1	07-30 11:25:04	+	t	ŧ	×
8	Rim_BWMmini_size	Failed	Tier	7h11m	35.0g/S2-250/S2	0/1	07-30 11:34:07	+	t	Ļ	×
9	Final_Eiffel_Tower_Si	Failed	Tier	37h35m	66.8g/TPU/TPU	0/1	08-02 17:43:41	+	t	ŧ	×
10	Final_Eiffel_Tower_Si.	Failed	Tier	24h 9m	64.6g/T230/T230	0/1	08-02 18:12:15	+	t	Ļ	x
11	Copy Model_4 CUFA_5	Failed	Tier	6h35m	42.5g/PLA/PLA	0/1	08-25 09:47:06	+	t	ŧ	x
10	OLIDA V	Tailad	T:	(100		0.11	00.05.00.50.00				~
当	前任务历史任务	清空	选择文件							退出	4

名称	描述
【个】	提升选定任务的排序位置
【↓】	降低选定任务的排序位置
【×】	从打印列表中删除选定的历史打印任务
【+】	将选定的打印任务添加到【当前任务】

